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Prof. Lyman Spitzer founded
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Heavy lon Fusion Program

*Collaboration between LBNL, LLNL, PPPL
*Goal to produce high intensity ion beam as driver for inertial fusion.

High Current Experiment (HCX)

Beam with ~100V self potential

SEY studies for ion beams A. Molvik

Gas lonization by lon Beam: I. Kaganovich

Neutralized Drift Compression
Experiment (NDCX)

Beam Compression in plasma

~70 longitudinal, ~100s times radial
Experiments: P. Roy, P. Seidl

Plasma neutralization theory: |. Kaganovich
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Plasma-wall interaction in the presence of strong
electron-induced secondary electron emission (SEE)

* Any plasma with electron temperatures above 20 eV for dielectric walls, and

above 50-100 eV for metal walls is subject to strong secondary electron
emission (SEE) effects:

Hall thrusters and Helicon thrusters

Hollow cathodes for high power microwave electronics
Multipactor breakdown and surface discharges

Space plasmas and dusty plasmas

Fusion plasmas

Plasma processing discharges with RF or DC bias

* Strong secondary electron emission from the floating walls can alter plasma-
wall interaction and change plasma properties.

 Strong SEE can significantly increase electron heat flux from plasma to the
wall leading to: 1) wall heating and evaporation and 2) plasma cooling.



Plasma applications where SEE is important

Hall Thruster discharge: used for Magnetron discharge: used for
electric propulsion deposition, plasma switch for
electric grid

Magnetic coils Cathode-neutralizer oL
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Modelling of SEE in plasma research

3D BEST PIC code: includes electromagnetic
(Darwin scheme) and electrostatic modules.

https://nonneutral.pppl.gov/
3D LSP code includes electromagnetic and

electrostatic modules. In collaboration with
Voss Scientific.

1-2D PIC code EDIPIC. Implemented electron-
atom scattering, ionization, and excitation as
well as electron-ion and electron-electron
collisions, complex SEY models.
https://w3.pppl.gov/~ikaganov
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Plasma properties can be changed by applying
PRINCETON engineered materials to the surface
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Velvet before plasma
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Plasma burned out all
protrusive fibers

Application of carbon velvet to channel walls improves considerably thruster
performance by reducing the electron cross-field current and by increasing

nearly twice the maximum electric field in the channel compared with the
conventional BN ceramic walls.

Plasma flow

bubdidd

Velvet
Fibers

N
a
|

Discharge current, A
N

-
a
|

®-High SEE boron nitride

A Verylow SEE velvet

To avoid field emission (, Ip < Debye length

200 400 600 800

Discharge voltage, V

* Velvet suppresses SEE and reduces current at high voltages (good)

* Sharp tips can enhance field emission leading to arcing (bad)

* Need to engineer velvet morphology so that inter fiber gaps and
protrusions are located well inside the sheath to avoid damage by arcing

Need to take into account spatial and temporal variations of sh9eath
width due to plasma non-uniformity or instabilities




Simulations and Theory of SEY of complex surfaces: Velvet

Velvet: regular or irregular lattice SEY as a function of incident angle for different packing
density of velvet.

Lines: Analytic model.

Points: Monte-Carlo simulations.

of normally-oriented fibers
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Simulations and Theory of SEY of complex surfaces: Fuzz/foam

Fuzz/foam: irregular lattice of SEY as a function of incident angle for
isotropically-oriented fibers different packing density of foam.
Lines: Analytic model.
~f ’M" Points: Monte-Carlo simulations.
: ‘-.;1 y’\v q(/l Discrepancy is due to tertiary and higher-order
AL, AV et electrons.
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Simulations and Theory of SEY of complex surfaces: Feathers

Feather: lattice of normally-oriented fibers  SEY as a function of incident angle for
with smaller, secondary fibers on the sides  different packing density of foam.
of that fiber. Feathers are able to suppress SEE for

b) —l/ all electrons ~1/4.
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PPPL experimental setup for SEE measurements

108 - 10-1%Torr (turbo, ion, & Ti sublimation pumps)

Quadrupole Mass Spectrometer
* Background gas, temperature program desorption (TPD)

Kimball Physics Pulsed Electron Source
* SEE measurements of dielectric and conductive materials

Auger Electron Spectroscopy (AES)

* Sample composition, SEE

Low Energy Electron Diffraction (LEED)/AES

* SEE yield, angular dependence and energy distribution of SEE
electrons

Electron Cyclotron Resonance Plasma Source
* Sample cleaning

Resistive heating (~*1400K max)
* Sample cleaning & conditioning, TPD

LN, cooling (<200K)

High Resolution Electron Energy Loss Spectroscopy

X-ray Photoelectron Spectroscopy (XPS)



PU experimental setup incorporates in situ analysis of

material composition

Vacuum
Chamber

Auger
Electron
Spectro-

meter

e

Low Energy
Electron

Diffraction

Optics

- P=2x10"1° Torr
- Ni(110) substrate

- 40 ML (10 nm) of
lithium on surface

Quad-
rupole
Mass
Spec

« Can expose to O, & H,0O to adjust
composition

- Measure composition with Auger electron

spectroscopy
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SEY of surface micro-architectured engineered
materials to suppress SEE

Carbon velvet

* Measured total SEE yield from velvets and

dendrites:
2
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BN M26,400C , &
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el 10% SiC-F
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o > |
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Energy of primary electrons, eV

* Surface-architectured materials can reduce the effective SEE yield by trapping
SEE electrons between surface architectural features.

* The SEE reduction is more significant for high aspect ratio (1:103) velvets than
for low aspect ratio (1:10) dendritic coatings.



EEDF of SEE Electrons from Graphite
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Total SEE Yield

SEE yield for W- flat samples
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SEE yield for W-fuzz and W- flat samples
Angular dependence of SEE yield
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Fig: Total SEE yield from W fuzz at 0° and 45° (red squares/crosses) compared to
smooth post-sputtered W (black circles/triangles). SEE from W fuzz is >40%
lower than from smooth W (despite W fuzz having more C, O, oxidation) due to
trapping of secondary electrons within the fuzz. SEE from W fuzz is independent
of primary electron incident angle since the orientation of fibers leads to a wide
distribution of local incident angles.



Velvet: surface-architectured material with low SEE

« Total SEE yield at normal incidence measured in vacuum
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 SEE from velvet can be several times lower than SEE from
carbon.

Jin, Ottaviano, Raitses (2017)



SEE Yield of Li & LiO,

As oxygen content
increases, SEY greatly
increased.

A. M. Capece, M. I.
Patino, Y. Raitses, and B.
E. Koel, Applied Physics
Letters 109, 011605
(2016)

Secondary Electron Emission Yield
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SEE

Yield of LiOH

Water is major
contaminantin
vacuum systems and
gives yields similar to
fully oxidized lithium.

Yield of LiOH similar
to oxidized Li

Applied Physics Letters
109, 011605 (2016)

Secondary Electron Emission Yield

® Bruining (1938) "Impure" Li
® LiOH (Liexposed to H,0)
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SEY was measured within few eV precision using a wall probe
using penning produced electrons with a specific energy

A metallic boundary reflects a negligible amount of low-energy incident
electrons when uncontaminated (“clean”) and

reflects a significant amount when contaminated by monolayers of adsorbent.
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SEY was measured within few eV precision using a weak
magnetic field in thermoemiting device

Knudsen Cs-Ba Electron trajectories Experimental results for reflection
in magnetic field coefficient and effective work function

plasma diode with
for different surfaces

surface ionisation

ey - : - S Mk o Pexp
N K 1° 110 03 53
N ;\ : } E NN 3
N ; = | 112 0.25 48
AL I d
T\ T 100 0.15 4.7
1 2 10 g
Ba 111 0.1 4.4
Dependence of anode
current on magnetic field 116 0.05 4.3
i H:u_:ril B Poly—crystal 0.15 4.6

It is shown that for poly-crystal surfaces, the SEE yield can be indeed very high (~0.8)
but still not approaching unity. This result is explained by additional reflection of primary
electrons from a potential barrier near the poly-crystal surface. The contribution of
electron reflection from the potential barrier and the surface has been indented and

studied. 24
A. Mustafaev, et al., to be submitted (2018).



Conclusions

* Derived analytical formulas for Secondary Electron Emission Yield for complex
surfaces: velvet, foam/fuzz, feathers and verified with a MC code.

Feathered surfaces are best at reducing SEY by a factor of 4.

* PPPL has sophisticated experimental set ups to measure SEY in cleaned and
oxidized samples, including dielectrics.

Measured SEY for several surface micro-structured engineered materials to suppress SEE:
velvet, fuzz, dendritic coatings.

High-aspect-ratio velvet reduces SEY most compared to low-aspect-ratio dendritic
coatings.

Measured EEDFs of true secondaries at low energies.
Measured angular dependence on primary electrons of SEY for W and fuzz.
Measured effect of oxidation on SEY of W, W fuzz and Li.

Measured SEY of very low energy using penning reaction in plasma magnetized thermionic
discharge.
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“Sample” method to measure SEE yield from
dielectric and high electric resistance materials

= d

Second Dielectric
elect:rorelgy & sample
[ N
: \ © To scope
Primary I
electron beam “#°>°F >
T ‘ oM | 3
S
Collector ||
|
Iz

- Faraday cup to measure the primary electron current, I,

« Sample to ground current to measure the sample current, I
« Aslightly positively biased collector to attract SEE electrons
« SEE current is obtained from lggg = -1

« SEEvyield is estimated as y= lge /1o



Measurements of SEE Properties of Materials

* PPPL Electron LEED-Auger
Spectroscopy System:

Linear
Feedthrough

- Retarding potential analyzer
for measurements of EEDF of
SEE electrons.

-UHYV facility: 1x102 Torr.

-Thermionic emission electron
gun: 3-16006V. ~, : Gun + Collectoi

- Conducting and dielectric
materials.

vacuum level

e Use two measurement methods of
the SEE yield:

i) biased sample

Fermi level
(Ground)

Screen G4 G3 G2 Gl Sample

ii) biased collector
Energy level diagram for LEED/AES optics.



High signal-to-noise measurements of SEE currents

Fast amplifiers with bandwidth
of 10 MHz, gain >107 V/A (1 V for
100 nA) and the current
resolution of <1 nA.

Reference method — Faraday
cup signal is subtracted from
the Sample signal to
compensate for ambient noise
during the pulse.

Farnday oup .

sample heater
5

dielectric sample
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Beley
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« Example of the measured sample current from 95% Al,O,

Primary energy: 300
eV

Sample current: 20
nA

Pulse: ~ 5 us
SEE vyield:y>1

CHAMY HEL 1

g Ml

Sample current

signal

Beam pulse

waveform




SEE Properties of Ceramic Materials and Graphite
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Energy of primary electrons, eV

e Strong SEE effects on plasma-wall interaction occur when SEE approaches 1.

* For ceramic materials, SEE yield is higher and approaches 1 at lower energies than for
metals due to a weaker scattering of SEE electrons on phonons (for insulators), A~ 20 nm,
than on electrons (for metals,), A~ 1 nm.



Fuzz characterization

.

\' X-Raysy ' 4

=)

Fig 6: Front view of the facility showing the W fuzz sample under the X-ray
source.



Fuzz chemical content

W
4 / \

Intensity, a.u.

40 35 30
Binding Energy, eV

Fig 8: XPS spectra of smooth pre-sputtered W (dashed blue line), smooth post-
sputtered W (thin black line), and W fuzz (thick red line). W fuzz has WO, and more
C and O impurities than the smooth W samples (full XPS spectra not shown).



Plasma properties can be changed by applying
engineered materials to the plasma facing surface

Application of high aspect ratio carbon velvet to thruster channel walls improves considerably
thruster performance by reducing the electron cross-field current and by increasing nearly twice
the maximum electric field in the channel compared with the conventional BN ceramic walls.

2 kW Hall thruster 3
B-High SEE boron nitride
12 cm Channel OD A Verylow SEE velvet
——T . " < 3
“l""%,," — = é 25
A 2 .
| :
S 2 t
s a
.g — o A A
Q1.5_ } "‘Ailz_

1

s Outer wall electrode

0 200 400 600 800

Discharge voltage, V

Velvet suppresses SEE and reduces

electron cross-field current as compared to
other materials.

Carbon velvet fibers:
Diameter x5, L2000, g=~20

Plasma flow

222222

Velvet
Fibers




Effect of anode material on the breakdown in low-
pressure helium gas

To demonstrate the effect of the anode material on the breakdown in low-pressure
helium gas, systematic experiments in helium were conducted using the copper cathode
and a variety of materials for the anode. A wineglass discharge tube shown in the left
figure was used. Results of measurements of the left sides of the Paschen curves are
shown in the middle figure. The curve for graphite is substantially shifted to the right. The
right figure demonstrates multi-value breakdown points for the graphite anode accessed

by (1) increasing and (2) decreasing the applied voltage.
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